Revolution of 3D printing in NIF Tech

In Diode-based Additive Manufacturing, the laser light is sourced by a set of four diode laser arrays and a pulsed laser. It passes through the Optically Addressable Light Valve, which patterns an image of a two-dimensional “slice” of the desired 3D part. The laser then flash prints an entire layer of metal powder at a time, instead of scanning with a laser as with traditional selective laser melting systems. Photos by Kate Hunts/LLNL

According to a new study by Lawrence Livermore researchers, a technology originally developed to smooth out and pattern high-powered laser beams for the National Ignition Facility (NIF) can be used to 3D print metal objects faster than ever.

The new method — Diode-based Additive Manufacturing (DiAM) — uses high-powered arrays of laser diodes, a Q-switched laser and a specialized laser modulator developed for NIF to flash print an entire layer of metal powder at a time, instead of raster scanning with a laser across each layer, as with conventional laser-based powder-bed fusion additive manufacturing (PBFAM) systems.

The technology was originally designed for and installed in NIF as part of the LEOPARD (Laser Energy Optimization by Precision Adjustments to the Radiant Distribution) system, which was deployed in 2010 and won an R&D 100 award in 2012.

Lawrence Livermore’s Laboratory Directed Research and Development (LDRD) funded the research. LLNL scientists Gabe Guss and Derreck “Reggie” Drachenberg played a central role in producing the parts, with contributions from Josh Kuntz and Eric Duoss.