Modified laser cutter prints 3D objects

Rice University bioengineering researchers have modified a commercial-grade CO2 laser cutter to create OpenSLS, an open-source, selective laser sintering platform that can print intricate 3-D objects from powdered plastics and biomaterials.

The design specs and performance of Rice’s OpenSLS platform, an open-source device similar to commercially available selective laser sintering (SLS) platforms, are described in an open-access paper published in PLOS ONE. “SLS technology has been around for more than 20 years, and it’s one of the only technologies for 3-D printing that has the ability to form objects with dramatic overhangs and bifurcations,” said study co-author Jordan Miller, an assistant professor of bioengineering at Rice who specializes in using 3-D printing for tissue engineering and regenerative medicine. “SLS technology is perfect for creating some of the complex shapes we use in our work, like the vascular networks of the liver and other organs.”

OpenSLS works differently than most traditional extrusion-based 3D printers, which create objects by squeezing melted plastic through a needle as they trace out two-dimensional patterns. Three-dimensional objects are then built up from successive 2D layers.

The research was funded by Rice University. Study co-authors include Samantha Paulsen, Daniel Hwang, Anderson Ta and David Yalacki, all from Rice; and Tim Schmidt of the Lansing Makers Network in Lansing, Michigan.